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Symbiont composition and coral
genotype determines massive
coral species performance under
end-of-century climate scenarios
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The recent decline of coral health and substantial loss of coral cover along Florida’s

Coral Reef (FCR) results from local stressors such as degraded water quality and

disease outbreaks in addition to anthropogenically driven global stressors including

ocean warming and acidification. Intervention strategies intended for the restoration

of degraded reef habitats need a better understanding of the influence of ocean

warming and acidification on coral health to target coral species and individual

genotypes that may be more resistant or resilient to such stressors. Here, we

examined a suite of physiological traits (coral host and algal symbiont) in response

to experimentally elevatedwater temperatures and pCO2 levels, both separately and in

concert, using threatened reef-building corals Pseudodiploria clivosa and Orbicella

faveolata reared within a land-based coral nursery. After two months of exposure,

responses differed by coral species, where P. clivosa showed declined physiology in

response to combined ocean warming and acidification stress and ocean warming

alone, whereas O. faveolata showed a positive response under ocean acidification.

Responses to temperature could be associated with the algal symbionts harbored, as

P. clivosa was dominated by the thermally sensitive Breviolum, and O. faveolata was

dominated by the thermally tolerant Durusdinium. Additionally, corals were raised in

well-sourced seawater that was naturally high in pCO2, which could have led to corals

acclimating to acidified conditions. Of the three P. clivosa genets tested, we

determined a top-performing genotype under the combined warming and

acidification treatment. O. faveolata, however, displayed high genet variation by

treatment and phenotypic trait, making genotype performance rankings challenging

to discern. The evidence provided in this study demonstrates that high phenotypic

variation in nursery-reared corals contributes to variable warming-acidification

responses, suggesting that high-standing genetic variation in nursery-reared corals

could support diverse coral restoration population outcomes along FCR.

KEYWORDS

coral restoration, coral bleaching, ocean acidification (OA), climate change, Florida’s
Coral Reef, Orbicella faveolata, Pseudodiploria clivosa, massive corals
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Introduction

In recent decades, climate change has exerted a combination of

acute and chronic stressors on coral reefs, threatening the function

and integrity of such productive and valuable ecosystems (Hughes

et al., 2017; Hughes et al., 2018b). Ocean warming (OW) and ocean

acidification (OA) associated with anthropogenic CO2 emissions and

other coastal processes contribute to the declining health of

scleractinian corals, notably causing thermally induced coral

bleaching events (the dissociation between the coral host and

photosymbiotic algae; Jokiel and Coles, 1990; Baker et al., 2008;)

and reductions in coral calcification rates (Anthony et al., 2008;

Schoepf et al., 2013). Mass bleaching events have become

increasingly common in the tropics (Heron et al., 2016; Hughes

et al., 2018a), driving the loss of coral cover from bleaching-related

mortality (Hughes et al., 2017; Hughes et al., 2018b). Changes in

oceanic pCO2 are also disturbing the carbonate budgets of coral reefs.

A recent assessment of the long-term persistence of reefs (Cornwall

et al., 2021) forecasted coral net carbonate production under

representative concentration pathways (RCP) 2.6, 4.5, and 8.5 and

found declines in accretion by 76, 149, and 156%, respectively, by

2100. Moreover, the Intergovernmental Panel on Climate Change

(IPCC) revealed that +1.5°C warming above pre-industrial levels will

result in a 70-90% decline of coral cover on most reefs (Frieler et al.,

2013; Schleussner et al., 2016), placing reef ecosystems at greater risk

in the coming decades under multiple stressors.

Within the wider Caribbean, there has been a steady decline in

live coral cover since the 1980s, attributed to seven mass coral

bleaching and disease events (Aronson and Precht, 2001; Gardner

et al., 2003; Manzello, 2015; Precht et al., 2016). Along Florida’s Coral

Reef (FCR), recent surveys indicate living coral cover constitutes only

5% of the benthic substrate (Ruzicka et al., 2013). Many regions of

FCR and the coral species within this region have been increasingly

susceptible to disease outbreaks (Precht et al., 2016; Muller et al.,

2020), bleaching events (Manzello, 2015), as well as ocean and coastal

acidification processes (Muehllehner et al., 2016; Enochs et al., 2019;

Meléndez et al., 2020), resulting in a more homogeneous coral

assemblage with the loss of reef-building species (Burman et al.,

2012). According to the International Union for the Conservation of

Nature’s Red List, Orbicella annularis and Orbicella faveolata are

identified as endangered and Dendrogyra cylindricus, Acropora

cervicornis, and Acropora palmata are critically endangered

Caribbean coral species (Neely et al., 2021; https://www.iucnredlist.

org). The decline of key taxa coupled with increases in octocoral and

sponges in reef communities along FCR (Ruzicka et al., 2013) could

be associated with recent net dissolution rates (Muehllehner et al.,

2016), net CO2 sinks (Moses et al., 2009), and decreased aragonite

saturation states of FCR (Gledhill et al., 2008).

Despite predictions of coral reef community responses to climate

change stressors, the fate of individual reef habitats is contingent on

individual coral species and genotype-specific responses, and only

tolerant or resilient coral genotypes may survive to contribute to

future generations (Libro and Vollmer, 2016; Muller et al., 2018). In

addition, high genetic and phenotypic diversity within

metapopulations contributes to the adaptive potential under rapidly

increasing environmental change (Matz et al., 2018). Research has

shown variation in phenotypic responses of the coral holobiont to
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elevated temperatures and pCO2 when acting independently and in

combination, depending on coral species and genotype (Comeau

et al., 2013; Okazaki et al., 2017; Schoepf et al., 2017). Studies

incorporating ocean acidification scenarios alone have revealed

contrasting patterns of coral growth and health, where some coral

species have reduced calcification rates (Jokiel et al., 2008; Krief et al.,

2010; Comeau et al., 2013; Schoepf et al., 2013) and dramatically

increased bleaching susceptibility under high irradiance (Anthony

et al., 2008). Alternatively, other coral species remain unaffected

(Reynaud et al., 2003; Krief et al., 2010; Edmunds et al., 2012;

Comeau et al., 2013; Hoadley et al., 2015; Schoepf et al., 2017) as

they can maintain intracellular pH and aragonite saturation in the

subcalicoblastic medium (Venn et al., 2013; Schoepf et al., 2017), and

decreased pH has been shown to stimulate endosymbiont physiology

(Hoadley et al., 2015; Noonan and Fabricius, 2016). However, the

influence of temperature appears to have a greater negative impact on

coral growth and acid-base regulation (Helmle et al., 2011; Gibbin

et al., 2015), and sustained thermal stress can induce coral bleaching

and mortality. The interaction of both OW and OA is more realistic

as it is unlikely corals are exposed to an individual stressor alone.

OAOW appears to exert more physiological stress on some coral

species than others (Anthony et al., 2008; Edmunds et al., 2012;

Schoepf et al., 2013; Hoadley et al., 2015; Noonan and Fabricius, 2016;

Okazaki et al., 2017). As these two stressors exert different timescales

and effects on coral holobiont physiology and likely have synergistic

or additive effects on coral health (Muller et al., 2021), it is critical to

investigate coral responses to both temperature and acidification.

To facilitate recovery of and buffer ecosystem function and

structure of degraded reef communities along the FCR, coral

restoration programs have been implemented and expanded upon

over the past 20 years (Jaap et al., 2006; Lirman and Schopmeyer,

2016). The development of ecological restoration and coral

propagation, by incorporating the ‘coral gardening’ method

(Rinkevich, 1995) and further refinements to maximize coral

survivorship and productivity (Johnson et al., 2011), coral nurseries

have the potential to buffer ecosystem structure by providing habitat

and rugosity. Coral restoration and propagation projects have

achieved ecologically meaningful scales - 10,000s of corals are being

grown within nurseries and outplanted onto degraded reefs each year

(Lirman and Schopmeyer, 2016). However, outplanting of nursery

corals throughout the Caribbean and particularly in Florida, initially

focused on acroporid corals per their conservation status and the

implementation of species recovery plans (National Marine Fisheries

Service, 2015) in addition to their fast growth and contribution to reef

structure, yet high mortality rates occur a few years after outplanting

(Ware et al., 2020; van Woesik et al., 2021). For massive species,

outplanting has been bottlenecked due to stony coral tissue loss

disease (Aeby et al., 2019), size- and tissue-selection predation risk

(Rivas et al., 2021), and slow growth despite advances in

microfragmentation (Forsman et al., 2015; Page et al., 2018). The

success of outplanted corals reared from in situ and ex situ nurseries

often have mixed results due to variable performance of outplants

(Lirman et al., 2014), as some reef sites have unfavorable water quality

(Muehllehner et al., 2016) or high levels of coral predators

(Schopmeyer and Lirman, 2015).

Despite local challenges associated with coral outplanting success,

it is imperative to understand the responses of nursery-reared coral to
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the major threats owing to coral reef decline - OW and OA - and

investigate which coral species and/or individual genotypes are

resistant to these stressors to aid in effective ecological restoration

of FCR. Although massive coral species outplanting projects are

lagging that of acroporids (Forsman et al., 2015; Page et al., 2018;

Aeby et al., 2019; Rivas et al., 2021), this provides a window of

opportunity to screen the vast biomass of restoration broodstock to

understand phenotypic response and resistance to environmental

stressors persistent along FCR that are likely to increase in

frequency and severity (Manzello, 2015). Since 2016, Mote Marine

Laboratory’s (MML) Coral Health and Disease Program has

conducted long-term experimental exposures using end-of-century

ocean warming and acidification scenarios on their nursery

broodstock coral species to understand physiological responses to

such stressors, which ultimately influences long-term survival after

outplanting at restoration reef sites. For this study, we investigated the

response of two nursery massive coral species - Pseudodiploria clivosa

and Orbicella faveolata - to OW and OA independently and in

combination and characterized whether genotypic variation in

phenotypic traits conferred more tolerant individuals to evaluate

the phenotypic diversity and adaptive capacity under end-of-

century climate conditions.
Methods

Coral collection, experimental system
and design

Orbicella faveolata and Pseudodiploria clivosa coral fragments (~4

cm2 ramet adhered to ceramic plugs) were sourced from Mote Marine

Laboratory’s (MML) ex-situ nursery at the ElizabethMoore International

Center for Coral Reef Research and Restoration (IC2R3) facility in

Summerland Key, Florida (24.6617° N, -81.4554° W) on 3 May 2018.

Corals were originally collected opportunistically from MML’s Key West

dockside nursery between 2010-2017 and then entered MML’s

microfragmentation land-based production pipeline (Page et al., 2018).

Colonies were genotyped via 2bRAD or microsatellites in 2018

(unpublished data) to confirm genetic differences. Twenty-four ramets

from 10 genotypes of O. faveolata (n=240) and 24 ramets from 3

genotypes of P. clivosa (n=72) were transferred into a shallow flow-

through raceway (2.54 m x 1.02 m x 0.30 m) in MML’s Climate and

Acidification Ocean Simulator (CAOS) system. Following the transfer,

corals were acclimated from the ex situ system’s well-derived seawater to

CAOS’s nearshore-derived seawater over a 17-day period. During this

time, raceways were covered with an overhead shade cloth from 1000-

1400 each day to minimize light stress as CAOS has ~200-300

Photosynthetically Active Radiation (PAR; µmol photon m-2 s-1)

greater than in the ex situ nursery.

Oceanic nearshore-derived seawater was filtered prior to entering

CAOS and then held in two 3785 L mixing tanks. Temperature and

pH within each mixing tank were independently controlled using

Walchem Series W900 controllers (Iwaki America, Inc., Holliston,

MA). One mixing tank contained ambient seawater pH targeting

present-day ocean conditions (418.94 ppm pCO2; Pörtner et al.,

2019), and the other contained end-of-century IPCC RCP 8.5

projections of 1200 ppm pCO2. High pCO2 was achieved by
Frontiers in Marine Science 03
injecting pure CO2 into the mixing tank from an automatically

controlled solenoid valve and venturi system connected to the

networked Walchem W900. The mixing tanks used during the

experiment were rotated every two weeks among a total of six

mixing tanks.

After the acclimation to nearshore-derived seawater, corals were then

transferred into 24, 16 L flow-through experimental aquaria distributed

across two raceways (Figure S1) for 3 days in controlled aquarium

conditions in CAOS system. Each experimental tank contained one

ramet per genotype of each species on an egg crate rack, a submersible

pump (99 GPH; Kedsum), and a plexiglass lid (Figure S1). Seawater was

independently pumped into each experimental tank at a rate of 18 L hr-1.

All coral replicates were kept at control temperatures and pH for baseline

physiological measurements and on 31 May 2018, incremental increases

in temperature and pCO2 began. The elevated temperature raceway was

raised from 27°C to 31.5°C (+0.5°C per day) over 10 days and pCO2 of

inflow water was raised in each pCO2 treatment tank gradually (+200

ppm pCO2 at three-day intervals) by administering pCO2 dosed seawater

(e.g., pH change 8.0 to 7.7). Raceways were maintained at either ambient/

control (27 ± 0.2°C) or elevated temperatures (31.5 ± 0.2°C) using a

recirculating seawater bath. The control temperature of 27°C represents

the mean Florida Keys coral reef temperatures for May and the elevated

temperature of 31.5°C represents +1°C over the bleaching threshold for

the region (Manzello, 2015). The targeted elevated pCO2 conditions were

selected to represent end-of-century IPCC RCP 8.5 projections for

acidification under business-as-usual CO2 emissions (IPCC, 2022). To

achieve a fully factorial design among conditions, half of the tanks in each

raceway were randomly assigned the high pCO2 treatment and half were

assigned the ambient pCO2 treatment (Table 1), resulting in four

temperature-pCO2 treatments, control (C: 27°C, 500 ppm pCO2),

ocean acidification (OA: 27°C, 1100 ppm pCO2), ocean warming (OW:

31.5°C, 500 ppm pCO2), and ocean acidification with warming (OAOW:

31.5°C, 1100 ppm pCO2). Water quality (temperature, salinity, dissolved

oxygen [DO], and pHTotal) was measured daily (0900-1000 GMT-5) in

each experimental tank using a multi-parameter handheld (YSI ProDSS,

Yellow Springs, OH) and a pH sensor (Seven2Go S8, Mettler-Toledo,

Greifensee, Switzerland). Husbandry, consisting of removing algae from

tanks and ceramic plugs, was completed weekly and corals were not fed

during the experiment. Light levels (PARmax) were collected weekly (LI-

1500 Light Sensor Logger with a LI-192 planar underwater quantum

sensor; Lincoln, NE). Light levels in the aquaria averaged 385 ± 146 mmol

photons m-2 s-1 for the duration of the experiment.
Carbonate chemistry analysis

Seawater samples were collected weekly in 125 mL amber bottles

from the mixing tanks and 12 random aquaria (n = 3 aquaria per

treatment) at 0900 (GMT -5) and temperature and salinity

measurements were collected from each sampled tank. Samples

were stored in the dark at 4°C and analyzed for total alkalinity

(TA) and dissolved inorganic carbon (DIC) following Dickson et al.

(2007) within 24 hr of collection. For DIC, water samples were first

filtered to 0.2 mM prior to analysis. TA was measured using a

Metrohm 905 Titrator with an 800 Dosino and DIC was measured

using an Apollo SciTech AS-C3 and then corrected with certified

reference materials (CRMs 170,174,175, and 176) provided by A.G.
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Dickson (Scripps Institution of Oceanography, Oceanic Carbon

Dioxide Quality Control, La Jolla, CA). DIC, TA, temperature, and

salinity were used in CO2SYS to calculate pCO2, pHT, and WAR. If

samples were not analyzed within 24 hours, they were fixed with

saturated mercuric chloride (HgCl2).
Non-destructive physiological
trait measurements

Physiological measurements of buoyant weight, coral tissue

surface area, and photochemical efficiency of each coral fragment

were completed before (T=0), at one month (T=1; 7th-12th of June

2018) and following two months of exposure (T=2; 6th-10th of

August 2018). From the 14th to the 23rd of August 2018,

respiration, photosynthesis, and calcification rates were measured

(Muller et al., 2021). After measurements were completed, half of the

corals were individually placed in sterile sampling bags (Whirl Pak)

filled with ~10 mL of RNAlater® (Thermo Fisher Scientific) and

stored at -80°C; the other half were saved for a disease exposure

experiment (Eaton et al. in prep).

Buoyant weight of coral ramets followed Davies (1989), where

corals were placed on a submerged weighted platform suspended

under a precision balance (VWR-503B, VWR, Radnor, PA) atop 45 L

aquarium tanks filled with 35 L of respective treatment seawater. One

coral replicate per treatment tank was weighed twice to determine

balance accuracy (0.001 ± 0.008 g). Temperature and salinity within

weighing tanks were recorded hourly to calculate the density of

seawater. Dry weight was calculated using the equation in Jokiel et

al. (1978) and growth rate (Dgd-1) was calculated as the change in the

dry weight between the initial and final time point divided by the

initial weight, then normalized to the number of days

between measurements.

At each time point, all coral ramets were photographed with a

Nikon (Coolpix AW130) digital camera mounted to an overhead rig

at a fixed distance with a ruler in the frame for scale. Total surface area

(cm2) was measured by tracing around the live tissue using ImageJ

software (National Institute of Health, Bethesda, MD, USA) followed

by the methods described in (Abramoff et al., 2004), and values were

used to normalize coral traits (i.e., chlorophyll, protein).

Dark-adapted photosynthetic efficiencies of Photosystem II (PSII)

were measured for each coral fragment using an IMAGING-PAMM-

series chlorophyll fluorometer (Walz, Germany). Fluorometry

measurements were made on the center of each fragment following

30 min of dark adaptation. Fv/Fm, the maximum quantum yield of

PSII, and ETRmax (maximum electron transport rate) were collected

from fluorescence measurements. Settings were measuring light = 3,

gain = 3, and damping = 1.

Net photosynthesis (Pnet) rates and respiration (R) rates were

measured in closed temperature-controlled incubation chambers (300

mL) using a fiber-optic oxygen meter (Firesting O2, PyroScience,

Aachen, Germany) connected to Pyro Oxygen Logger software

(PyroScience, Denmark). Oxygen sensors were calibrated prior to

measurements in 100% air-saturated water. One chamber per

treatment per day contained only treatment seawater to correct for
Frontiers in Marine Science 04
background microbial respiration and instrument drift. Photosynthesis

rates were measured at approximately 190 ± 18 µmol photons m-2

(mean ± SD) for 60 min using a standard overhead fluorescent light

strip at a fixed distance above the chambers. Respiration rates were

measured in complete darkness for 60 min. Oxygen evolution rates

(µmol O2 hr–1) for both photosynthesis and respiration rates were

standardized to surface area and then used to calculate P:R.

Net calcification rates of corals were determined using the Total

Alkalinity (AT) anomaly technique (Chisholm and Gattuso, 1991), where

seawater samples for each coral were collected from each chamber before

and after 60 min of light and 60 min of dark incubations to calculate the

change in total alkalinity. Samples were stored in the dark at 4°C and

analyzed within 24 hr of collection; if samples were not analyzed within

24 hr they were fixed with saturated mercuric chloride (HgCl2). AT was

measured using a modification of the open-cell titration method

(Dickson et al., 2007) on an automated titrator (Metrohm 905

Titrando) with 0.05N HCl in 0.6M NaCl for ~40g seawater samples.

Calcification rates were calculated from the difference between AT

measured at the beginning and the end of each incubation period

corrected for blank values from the seawater-only incubation according

to the equation described by (Schneider and Erez, 2006). Calcification

rates (µmol CaCO3 h
-1) were normalized to surface area.
Destructive physiological
trait measurements

Concentrations of soluble host protein, algal symbiont density, and

chlorophyll a (chl a) were quantified from half of the corals that were

preserved in RNAlater. Coral tissue was removed from the skeleton using

an airbrush (Paasche, Kenosha, Wisconsin) with filtered seawater (0.2

µm; FSW) and collected into a sterile 50 mL tube (Falcon®). The tissue

slurry was homogenized (VWR® 200 Homogenizer) and then

centrifuged at 4500 rpm for 5 min at 4°C. An aliquot (200 uL) was

taken from the supernatant for host protein concentration determination

and measured spectrophotometrically at 595 nm on a Synergy H1

microplate reader (BioTek Instruments, Inc., Winooski, VT) using a

colorimetric protein assay (Bradford, 1976) and bovine serum albumin as

the standard. The remaining supernatant was removed from the pelleted

tissue, which was then resuspended in 1 mL FSW to standardize the

volume of all samples. A 90 uL aliquot was fixed with 10% v/v Formalin

and then stored at 4°C for symbiont cell counts. Counts were performed

in triplicate using a hemocytometer (Neubauer improved, Superior

Marienfeld, Germany) on a compound microscope (Amscope, Irvine,

CA). The remaining slurry (910 uL) was centrifuged at 4500 rpm for

5 min at 4°C and the supernatant was discarded. Then, the algal pellet

was resuspended in 1 mL 90% cold acetone with ~200 uL 0.5 mm glass

beads (Biospec Products, Bartlesville, OK), bead-beaten at maximum

speed on a vortex fitted with a horizontal microtube holder (Scientific

Industries, Inc., Bohemia, NY) for 5 min to disrupt cellular material, and

placed in darkness at 4°C for 24 hr to extract chlorophyll. Chlorophyll

absorbance at 630, 663, and 750 nm was measured on a microplate

reader and concentration calculations followed (Ritchie, 2006). Host

protein, algal symbiont density, and chlorophyll a were all standardized

to surface area (cm2).
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Symbiodiniaceae genotyping

Samples for Symbiodiniaceae genotype identification were collected

from three ex-situ nursery replicates of each coral genotype used in the

experiment. Samples were collected by scraping the surface of each

replicate coral (approximately 3 - 4 polyps) with a sterile razor blade

and preserved in RNAlater (ThermoFisher Scientific, Waltham, MA).

DNA was extracted using a DNeasy PowerSoil Kit (QIAGEN,

Germantown, MD) with modifications to the manufacturer’s

protocol (Rosales et al., 2020). From the PowerBead tube, 200 µL of

PowerBead solution was removed before coral samples were added to

the tube. Then, 200 µL of phenol:chloroform:isoamyl alcohol (PCA; 7.8

pH) and 60 µL of Solution C1 were added, and tubes were vortexed for

10 min before the original protocol was resumed. DNA concentrations

and quality were measured using a NanoDrop 2000™ Microvolume

UV-Vis Spectrophotometer (ThermoFisher Scientific, Waltham, MA,

USA) prior to sequencing the forward and reverse ITS2 region with MR

DNA laboratory (www.mrdnalab.com, Shallowater, TX, USA). This

gene region was amplified using the forward primer (symbiITS1)

sequence GAATTGCAGAACTCCGTG and the reverse primer

(symbiITS2) sequence GGATCCATATGCTTAAGTTCAGCGGGT.

Pooled samples were sequenced on Illumina’s MiSeq platform

(paired-end 300 bp) on the 17th of April 2019 with a sequencing

depth of 20K. Resulting raw paired-end reads were demultiplexed and

then submitted to SymPortal (Hume et al., 2019) for analysis using

default parameters.
Statistical analysis

Fixed effects of genotype and treatment with the random effect of

tank were tested on overall coral physiology (growth rate, Fv/Fm, chl

a, symbiont density, host protein, P:R, and light calcification) using a

permutational multivariate analysis of variance (PERMANOVA)

with the vegan package (Oksanen et al., 2013) of R v1.4.1106 (R

Core Team, 2018). Three outlier samples from each coral species were

removed from analyses prior to standardization and conducting

PERMANOVAs using Euclidean distance calculations to generate p

values. Significant effects of treatment and genotype were further

examined using the pairwiseAdonis package (Martinez Arbizu, 2009)

with Bonferroni adjusted p values. We were unable to compute

pairwise comparisons for the interacting main effects of

temperature and genotype and analyzed interactions further among

individual response variables.

Individual phenotype responses were examined using linear

mixed-effects models (LME) in the lmerTest package (Kuznetsova

et al., 2017) with genotype and treatment as fixed effects and tank

replicate as a random effect to account for potential tank effects.

Non-destructive response variables measured throughout the

experiment (growth rate and Fv/Fm) had the fixed effect of time

added to each model. Assumption checking of normality and

homogeneity of variance were performed on residuals of each

model and response variable transformations occurred when

necessary. Post hoc comparisons on significant main effects using

Tukey’s honestly significant difference (HSD) were conducted using

the emmeans package (Lenth et al., 2020). Pearson’s correlations

using cor.test (stats package) were conducted on growth rate and
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end Fv/Fm values to examine potential tradeoffs between growth

and photochemical efficiency for each treatment within each species.

All figures were created in ggplot2 (Wickham, 2016) and post-

processed in Illustrator.

Symbiodiniaceae abundance counts for each Defining

Intragenomic Variant (DIV; Hume et al., 2019) within each coral

species were analyzed using the MCMC.OTU package (Green et al.,

2014). First, any DIVs that represented less than 0.1% of total

sequence counts were removed. Then Poisson-lognormal

generalized linear mixed model analyses of multivariate count data

were conducted using MCMC to determine any change in relative

proportions of individual DIVs across genotype (fixed) and replicate

(random) within each species. PERMANOVAs were used to test for

differences in Symbiodiniaceae ITS2 type profiles across the fixed

factor of genotype in the adonis function, with 9,999 permutations of

residuals from Bray-Curtis dissimilarities. Significant effects of

genotype were assessed further with the package pairwiseAdonis

using false discovery rate (FDR) corrected p-values. All raw data

and code for analyses and Figures are available in the electronic

notebook associated with this publication on the GitHub repository:

https://github.com/courtneyklepac/Mote_2018OFAV-PCLI_End-of-

Century-OAOW-Physiology.
Results

Treatment conditions

The physical and chemical conditions of the four treatments were

maintained throughout the two-month exposure experiment (Table 1).

pCO2 levels were different for all treatments, where the OAOW treatment

was significantly higher than the OA treatment (Tukey p < 0.001; Figure

S2), and the OW treatment had higher pCO2 than the Control (Tukey

p < 0.001), which is expected under increased temperature releasingmore

CO2 into the atmosphere, resulting in a reduction of pH due to less

available H+ and HCO3
- (Hunter, 1998). In addition, temperatures in

both the OW and OAOW were greater than in the OA and Control

treatment (Tukey p < 0.001), and the OAOW treatment was slightly

warmer than the OW treatment (p = 0.047).
Physiological response to treatments

For the physiological traits of P. clivosa, there was a difference in

overall host and algal symbiont physiology among treatments, where

both OW and OAOW differed from the Control and OA treatments

(all comparisons adj. p < 0.01; Figure 1). All response variables

contributed equally to differences across treatments for this coral

species. For O. faveolata, the holobiont physiology varied by

treatment, genotype, and the interaction of the two (PERMANOVA

p < 0.001, p < 0.001, p = 0.04, respectively; Figure 1). There was a

difference in overall physiology between the OA treatment and

Control, OW, and OAOW treatments (adj. p < 0.01), with

chlorophyll a (chl a [µg cm-2]), symbiont cell density, and host

protein as the main contributing responses in the OA treatment.

After adjusting p-values for multiple comparisons between genotypes

across treatment, genotype 8 was different from genotypes 1 and 126
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(p = 0.04), genotype 3 was different from 11 (p = 0.04), and genotype

61 was different from genotype 126 (p = 0.04).
Associations between growth and
Fv/Fm following two-month exposure
to treatments

Non-destructive measurements made throughout the experiment

revealed effects of a treatment and genotype interaction for growth

rate (Dg d-1) and mixed effects of genotype, treatment, and time for

Fv/Fm for both coral species. In P. clivosa, genotype 17 had the lowest

growth under OA (p < 0.01; Figure S3A) and grew slower than

genotype 12 under OW (p < 0.01). In the OAOW treatment,

genotypes 17 and 3 had lower growth than genotype 12 (p < 0.01, p

= 0.02, respectively). For O. faveolata, genotypes 2, 8, and 27 had the

lowest growth in the Control treatment, genotypes 2 and 8 had the

lowest growth in the OA treatment, genotypes 8 and 27 had the lowest

growth in the OW treatment, and genotypes 27 and 125 had the

lowest growth in the OAOW treatment (Figure S3B).

For Fv/Fm there was a significant effect of time for both species (p

< 0.01; Figure S4), where pre-exposure measurements had

significantly greater Fv/Fm values than the mid and final timepoints

across all treatments, whereas the mid- and end-point measurements
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did not differ, except for O. faveolata OA, OW, and OAOW, where

end Fv/Fm values were lower than mid-point values (p < 0.001, p <

0.01, and p < 0.0001, respectively). In P. clivosa, all genotypes had

similar Fv/Fm values across all treatments until the final timepoint,

where genotype 17 had higher Fv/Fm values than genotype 3 and 12

(p < 0.01 for both) under OAOW and Fv/Fm values were greater for

genotype 17 than 3 under OW (p < 0.01; Figure S4A). In O. faveolata,

mid-point OAOW Fv/Fm values were higher than Control (p < 0.001)

and OA (p < 0.01), and OW was higher than Control (p < 0.01). By

the end of the experiment, OW Fv/Fm values were greater than the

OA treatment (p = 0.03), and genotypes 2 and 126 had the lowest Fv/

Fm values in both the OW and OAOW treatments (Figure S4B).

By the end of the experiment, genotypes with the slowest growth

rates typically had greater Fv/Fm values, so we explored the potential for

tradeoffs in these two phenotypes for both species across all treatments.

For P. clivosa, although no significant Pearson correlations were found

across treatments, there was a trend towards a positive and negative

correlation between growth and Fv/Fm under OW and OAOW

treatments, respectively (Figure 2A), yet this didn’t result in any

significant correlations for each genotype within these treatments.

There was a significant positive correlation for O. faveolata under OA

treatment (p < 0.001, R2 = 0.44; Figure 3A). Interestingly, there was a

strong negative relationship between growth and Fv/Fm for genotype

OF126 under Control conditions (p < 0.05, R2 = -0.86).
TABLE 1 Summary of mean ± SE water quality parameters from the experimental tanks for all treatments (DO [Dissolved Oxygen], TA [Total Alkalinity],
DIC [Dissolved Inorganic Carbon], pHT [total scale], pCO2 [partial pressure of CO2], War [Saturation state of seawater with respect to aragonite]).

Treatment
Temperature

(°C)
Salinity
(ppt)

DO
(mg/L)

TA
(µmol kg-1-SW)

DIC
(µmol kg-1-SW) pHT

pCO2

(µatm) War

Control 27.2 ± 0.01 35.7 ± 0.1 6.6 ± 0.03 2151 ± 2 1923 ± 2 7.89 ± 0.002 568 ± 3 2.6±0.01

OA 27.2 ± 0.01 35.7 ± 0.1 6.0 ± 0.03 2154 ± 2 2029 ± 3 7.65 ± 0.002 1064 ± 6 1.6±0.01

OW 31.4 ± 0.01 35.8 ± 0.1 6.2 ± 0.03 2155 ± 2 1926 ± 2 7.83 ± 0.002 668 ± 4 2.7±0.01

OAOW 31.5 ± 0.01 35.7 ± 0.1 5.6 ± 0.03 2153 ± 2 2027 ± 3 7.60 ± 0.002 1225 ± 6 1.7±0.01
Control represents the ambient temperature with ambient pCO2 treatment, OA (Ocean Acidification) represents the ambient temperature with high pCO2 treatment, OW (Ocean Warming)
represents the high temperature with ambient pCO2 treatment, and OAOW (combined acidification with warming) represents the high temperature with high pCO2 treatment (n=336 for
Temperature, Salinity, DO, pH, and pCO2, n=24 for carbonate parameters).
FIGURE 1

Principal component analysis (PCA) biplot of physiological trait data for 69 P. clivosa (left) and 115 O. faveolata (right) samples. Data point symbols are
colored and shaped by treatment. Solid black vectors are trait loadings. PERMANOVA results are displayed in the top right corner of each plot and
display differences among treatments.
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Phenotypic traits in response to treatment
and/or genotype

Differences among treatments were detected in chl a

concentration (µg cm-2), symbiont density (cells cm-2), P:R, and

light calcification (µmol CaCO3 cm-2 h-1) in P. clivosa. Both OA

and OAOW treatments had an overall negative effect on the
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concentration of chl a than both the Control and OA treatments

(p < 0.01; Figure 2B). Mean (± SD) chl a values for OW were 1.32 ±

1.15, OAOW was 0.84 ± 0.80, OA was 5.98 ± 1.56, and Control was

6.28 ± 1.91 µg cm-2. Similar to chl a, square root transformed

symbiont cellular density was lower in both OW and OAOW

treatments in comparison to OA and Control (OW vs. OA p <

0.01; OAOW vs. OA p < 0.01; OW vs. Control p < 0.01; OAOW vs.
A

B

D

C

FIGURE 2

Physiological trait measurements of (A) growth rate correlated with end Fv/Fm, (B) chlorophyll a, (C) host soluble protein, and (D) daily net Photosynthesis :
Respiration (P:R) ratio for each genotype of P. clivosa, faceted by treatment (Control, OA, OW, OAOW). Pearson correlation coefficients and p-values are
within each treatment for panel (A). Significant pairwise comparisons among treatment are indicated by capital letters in each treatment facet. Points are
colored by genotype and represent mean ± 95% confidence intervals (n=5-6 per treatment).
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Control p < 0.01; Figure S5A). Within the OAOW treatment,

genotype 12 had 96% lower symbiont density than genotype 17

(p = 0.03). Host protein concentrations remained unchanged across

all treatments and genotypes (Treatment p = 0.06, Genotype p = 0.48;

Figure 2C). For daily P:R, values in the OAOW treatment were 42%

lower than Control and OA values (p < 0.01; Figure 2D). Light
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calcification in the OW and OAOW treatments were 64% and 58%

lower than in comparison to the OA treatment (p = 0.04 and 0.07,

respectively; Figure S6A).

For O. faveolata, chl a and host protein concentrations varied by

genotype (p < 0.01 for both) and treatment (p < 0.01 and p = 0.05,

respectively; Figures 3B, C). Fragments in the OA treatment had 37%
A

B

D

C

FIGURE 3

Physiological trait measurements of (A) growth rate correlated with end Fv/Fm, (B) chlorophyll a, (C) host soluble protein, and (D) daily net Photosynthesis :
Respiration (P:R) ratio for each genotype of O. faveolata, faceted by treatment (Control, OA, OW, OAOW). Pearson correlation coefficients and p-values
are within each treatment for panel (A). Significant pairwise comparisons among treatment are indicated by capital letters in each treatment facet and
Tukey HSD significant pairwise comparisons among genotype are specified within treatment, where applicable. Points are colored by genotype and
represent mean ± 95% confidence intervals (n=5-6 per treatment).
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more chl a than in the Control, and OAOW treatments (p< 0.01 for

both; Figure 3B) and 33% more than in the OW treatment (p = 0.01).

Overall, genotype 2 had greater chl a values than genotypes 1, 27, 125,

and 126 (p < 0.01, p = 0.001, p < 0.01, p < 0.05, respectively). For host

protein concentrations within the OA treatment, genotype 2 had 68%

more host protein than genotype 27 (p = 0.02) but overall, genotypes 2,

8, and 125 had greater protein concentrations than genotype 1 (p =

0.03, 0.04, 0.01, respectively). There were no differences in daily P:R and

symbiont density across treatment and genotype (Figures 3D, S5B).

There was an effect of genotype for light calcification where genotype 5

had greater overall values than genotype 1 (p < 0.01; Figure S6B).
Performance of genotypes across traits

Heatmaps of scaled phenotypic traits (end growth rate, Fv/Fm, chl

a, daily P:R, and light calcification) reveal the overall relative

performance of each genotype under the end-of-century (OAOW)

treatment (Figure 4). By summing the averaged trait values for each

genotype, a total value results and can be used to qualitatively rank each

genotype as a better or worse physiological performer. For P. clivosa

under OAOW, genotype 17 would be considered the highest performer

under future environmental stress - displayed by all red tiles for each

phenotype - followed by genotype 3 and then 12. For O. faveolata,

genotype rankings are complicated by similar phenotypic responses to

most treatments, but genotype 3 has the highest total score, the best

performer followed by 8, and the ‘worst’ performers would be 27 and

11. Across the remaining treatments, there was sufficient genotypic

variation for the ‘best’ and ‘worst’ performers (Figure S7). Heatmaps of

Control, OA, and OW treatments illustrate the complexity of each

genotype or trait investigated, where certain genotypes perform better

than others under one treatment or trait, but not another, and there are

incongruencies of rankings between metrics that characterize similar

phenotypes (i.e., photophysiology: end Fv/Fm and chl a).
Symbiont composition

P. clivosa corals sourced from Mote’s land-based nursery

contained 84-94% ITS2 type Breviolum B1 symbionts, followed by
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1-11% ITS2 type Durusdinium D1 symbiont communities (Figure

S8), yet neither MCMC.OTU nor PERMANOVA results indicated a

significant difference in symbiont composition between genotypes. In

contrast, O. faveolata corals contained 50-97% ITS2 type

Durusdinium D1, 0.2-36% ITS2 type Breviolum B1 symbionts, and

0-19% ITS2 type Cladocopium C3 symbionts. Two O. faveolata

genotypes - OF8 and OF126 - contained the highest proportion of

Breviolum B1 (36% and 22%, respectively) thanDurusdiniumD1, and

OF126 was the only genotype to contain Cladocopium C3 (Figure S8).

Four of the nine Symbiodiniaceae ITS2 type profiles identified

through SymPortal had significantly different proportions across

genotypes of O. faveolata. For Breviolum ITS2 type profile B1-

B1ao-B1x-B14e-B1ai-B1am-B1j-B14b, genotypes OF5 and OF126

had a greater abundance than OF3, OF27, and OF125 (MCMC p <

0.05; Figure S9). Genotypes OF5, OF8, OF61, and OF126 had greater

proportions of ITS2 type profile B1-B1au-B1by-B1bw-B14h-B1dm

than OF11 (MCMC p < 0.05), and genotypes OF1, OF2, OF3, OF11,

OF27, and OF125 had greater proportions of B1-B1g-B1br-B1ao-

B1x-B1dq than OF61 and OF126. One Cladocopium ITS2 type profile,

C3-C21-C3an, was more abundant in OF126 than OF2 and OF125

(MCMC p < 0.05; Figure S8).
Discussion

Restoration coral species differ in response
to climate change stressors

Coral restoration practitioners have established successful

outplant and monitoring methods, with the ability to put out

massive biomass of restoration broodstock (Lirman and

Schopmeyer, 2016), but are challenged with ensuring the long-term

survival of outplanted corals subject to environmental disturbances

and ecological dynamics exacerbated by global climate change. Here,

we examined restoration coral broodstock responses to ocean

warming (OW), ocean acidification (OA), and the combined effect

of both (OAOW) to understand the overall effects of climate change

stressors and which, if any, genotypes are more resistant to these

stressors. Both massive coral species, Orbicella faveolata and
FIGURE 4

Heatmaps of scaled mean physiological trait values (x-axis) for each genotype (y-axis) of P. clivosa (left) and O. faveolata (right) under the OAOW
treatment, where red indicates higher values (= higher performance) and blue are lower values (= lower performance). Values in the ‘Total’ column
correspond to the summed average trait values for each genotype.
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Pseudodiploria clivosa, had contrasting responses to treatments,

which could be explained by the Symbiodiniaceae genus harbored

(Sampayo et al., 2008; Hoadley et al., 2019) and species-specific

differences in physiological responses (Abrego et al., 2008; Smith

et al., 2013; Gibbin et al., 2015; Klepac and Barshis, 2020). Genotype-

specific differences in phenotypes differed by species and across

treatments, highlighting the challenges with ascertaining resilience

values (i.e., ability to survive disturbances) for each coral species to

inform best restoration practices.

Nursery P. clivosa coral phenotypes were negatively affected by

the OW and OAOW treatments, indicating possible susceptibility to

ocean warming scenarios and the combined effects of OA and OW

predicted for the next decades. Reduced symbiont photophysiology

(chlorophyll and Fv/Fm) affects coral holobiont traits such as

metabolism (P:R) and calcification (Fitt et al., 2000), where

increased respiration and reduced light calcification affect the long-

term growth and reproductive potential of corals (Albright, 2011). P.

clivosa genotypes were dominated by symbionts belonging to the

genus Breviolum which could explain this species’ sensitivity to

thermal stress in comparison to the symbiont genus Durusdinium

(Russnak et al., 2021). Interestingly, genotype PC17 contained greater

proportions of Durusdinium D1 (10.75%) than genotype PC12

(Durusdinium 0.5%; Figure S8), had greater Fv/Fm, but lower

growth, indicating the potential tradeoffs with harboring this taxon

of Symbiodiniaceae (Cunning et al., 2015).

In contrast to P. clivosa, nursery O. faveolata displayed similar

responses between control, OW, and OAOW treatments and an

apparent benefit under OA conditions, specifically within

photophysiological responses of the algal endosymbiont. Corals can

mitigate the acidification of the surrounding seawater by maintaining

elevated pH levels and aragonite saturation states in the

subcalicoblastic medium and carbon concentrating mechanisms to

maintain high dissolved inorganic carbon levels to promote

photosynthesis (Davy et al., 2012; Barott et al., 2015; Putnam et al.,

2017). As a result, symbionts consume excess CO2 for photosynthesis,

potentially contributing to or cascading into increased photochemical

apparatuses and efficiency. In addition to increased phenotypic

responses to OA, O. faveolata was not significantly affected by

ocean warming or ocean warming and acidification treatments.

Nursery-reared O. faveolata in the present study contained

predominantly Durusdinium trenchii and many studies have shown

reduced bleaching responses in corals harboring this symbiont

(Silverstein et al., 2017; Cunning et al., 2018), conferring a

bleaching threshold 1-2°C higher than other types of

Symbiodiniaceae (Silverstein et al., 2017). Interestingly, genotypes

OF126 and OF8 contained mixed assemblages of Durusdinium,

Breviolum, and Cladocopium, but it was genotypes OF1, OF27,

OF125, and OF126 with the lowest overall chlorophyll content.

Moreover, the growth of genotypes dominated by Durusdinium

ITS2 types was not reduced under OW and OAOW conditions and

appears to be decoupled from photophysiological responses under

those treatments as well (Figure 3A; Edmunds, 2017; but see Pettay

et al., 2015). These inconsistencies underlying reduced physiology

under climate change stressors highlight the potential roles of

microbial community composition (Grottoli et al., 2018) or other

factors, such as host genetics or host buffering, not accounted for

herein. Regardless, future research investigating thermal bleaching
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responses of nursery-grown O. faveolata could incorporate even

higher temperatures than used in the present study to elucidate this

species’ thermal tolerance and identify genotypic-level differences in

heat stress response.
Nursery corals are acclimatized to ocean
acidification conditions

Ocean acidification threatens coral calcifying processes such as

acid-base regulation, growth, and physical integrity (Venn et al., 2013;

Putnam et al., 2017). Few studies have investigated the impacts of

ocean acidification on coral health (Chan and Connolly, 2013), yet

much research has not demonstrated a direct negative effect of ocean

acidification on coral growth per se (Venn et al., 2013; Kavousi et al.,

2015; Schoepf et al., 2017; Page et al., 2021; ; but see Okazaki et al.,

2017). Here, we demonstrate that the effects of OA on P. clivosa were

like that of control treatments, and for O. faveolata, OA was beneficial

for coral health metrics such as chlorophyll a content, symbiont

density, and host protein concentration. Corals have shown steady-

state maintenance of higher internal pH and aragonite saturation at

the subcalicoblastic medium under short- (24 hr) and long-term (1

year) acidification conditions (Venn et al., 2013), and could be the

mechanistic response of O. faveolata and P. clivosa exposed for two

months herein. Similar to Schoepf et al. (2017) and Page et al. (2021),

corals used in this study resided in raceways containing well water

that exposed corals to seasonally variable and lower pH levels (pH

~7.7; Table S1). Therefore, it is highly likely that the high pCO2

treatment was not more stressful than control conditions and

acclimation to pH of similar magnitudes could sustain coral growth

under ocean acidification conditions (Schoepf et al., 2017). In

contrast, wild-collected O. faveolata and P. clivosa demonstrated

decreased calcification rates after two months of experimentally

increased temperature and pCO2 (Okazaki et al., 2017). Corals that

originated from Lower FCR sites in Okazaki et al. (2017) were adapted

to present-day pCO2 regimes and subsequently may be more affected

by increased pCO2, despite being subject to similar experimental

exposure periods herein. More evidence is needed to further explore

whether the contrasting responses to experimental OA conditions

between this study and Okazaki et al. (2017) can be attributed to

environmental history (nursery aquaria versus wild reef) or

underlying physiological differences.
Combined ocean acidification and warming
negatively affect coral health

From an ecosystem-wide perspective, it is projected that all future

CO2 emission scenarios (RCP 2.6 - 8.5) will reduce global calcium

carbonate production and accretion through changes in calcification

and bioerosion (Cornwall et al., 2021). However, this is

predominantly driven by declining coral health and mortality

following coral bleaching events and marine heatwaves, where the

bare skeleton is susceptible to microbial biofilms and metabolic

activity driving skeletal decay alongside dissolution of the carbonate

skeleton (Leggat et al., 2019). Here, we demonstrated the potential

direct and negative effects of combined ocean warming and
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acidification are more pronounced for P. clivosa compared with O.

faveolata, where an increasingly negative effect of high temperatures,

and more so of combined increased temperatures and pCO2, was

apparent for all coral physiological responses (Figure 2). Other studies

have found species-specific responses to combined ocean warming

and acidification, where physiological stress was more severe for some

species (Anthony et al., 2008; Schoepf et al., 2013; Hoadley et al., 2015;

Kavousi et al., 2015) but not for others (Edmunds et al., 2012; Schoepf

et al., 2013; Hoadley et al., 2015; Kavousi et al., 2015; Noonan and

Fabricius, 2016), similar to our contrasting results between nursery-

reared O. faveolata and P. clivosa. However, both wild O. faveolata

and P. clivosa demonstrated decreased calcification rates under

increased temperatures and pCO2 (Okazaki et al., 2017), indicating

the possible detriment to coral health of Florida’s Coral Reef under

future climate stressors, especially if restoration corals quickly

acclimatize to their restoration site environment. The synergy of

both climate change stressors coupled with species-specific responses

will ultimately impact future coral reef composition (Okazaki et al.,

2017) and the long-term success of coral restoration.
Characterization of genotypic performance

In addition to examining nursery-reared coral physiological

responses to projected climate change stressors, we also sought to

characterize any genotype differences to inform restoration

practitioners about which genotypes would likely have inherently

greater resistance to environmental stress. Information from

resistance screenings serves to inform reproduction and restoration

pipelines on which genotypes to continue using for direct outplanting,

selective breeding, and/or whether susceptible genotypes should be

phased out of production. We found substantial variation among

genotypes and across phenotypes within treatments, challenging our

interpretation of genotype-specific ranking of performance. For

instance, the scaled phenotype heatmaps for each treatment reveal

inconsistent patterns for each genotype, where each genotype’s

phenotype has a different score depending on the treatment (see

Figure S7). However, some genotype scorings were reflective of a

physiological advantage (albeit not across the full suite of traits) when

reviewing the total values as putative “rankings” in the end-of-century

heatmaps (Figure 4). In this case, genotype OF3 could be considered

the likely ‘winner’ for O. faveolata, and a potential tradeoff could exist

for P. clivosa genotype 17 under end-of-century conditions although

it is the top performer. Caution should be exerted from extrapolating

performance rankings of P. clivosa as we only had sufficient biomass

to examine three genotypes. This small sample size likely inflated the

identification of top performers, and the inclusion of additional

genotypes would naturally increase the amount of phenotypic

variation in response to experimental stress (Kavousi et al., 2015).

We did find possible ‘losers’ for O. faveolata, where OF11 and OF27

had the lowest chlorophyll a content and growth (light calcification).

Moreover, related traits such as photophysiology (chlorophyll a,

Fv/Fm, symbiont density) did not reveal similar responses among

genotypes but could instead reflect differences in the timing of

biological and subsequent physiological responses to stress (Fitt

et al., 2000). Although we demonstrated substantial variation within

both coral species and are unable to definitively identify which
Frontiers in Marine Science 11
genotypes are most resistant to climate change stressors, the

standing phenotypic variation in O. faveolata could potentially

serve as standing genetic variation for environmental selection of

beneficial traits across restoration sites (Dixon et al., 2015; Drury

et al., 2016; Matz et al., 2018) as well as increasing genetic diversity via

selective breeding (Dixon et al., 2015; Quigley et al., 2020).

High phenotypic variation under different treatments across

multiple genotypes in the two coral species could also result from

exposure levels that were not stressful enough to elicit genotypic

differences in response to each treatment. The nursery corals used in

this study were grown in raceways with well-sourced seawater, where

pH fluctuated naturally by season. In addition to naturally low rearing

pH compared to experimental control and OA pH levels, the ocean

warming treatment temperature of 31.5°C did not elicit a large

physiological bleaching response in O. faveolata. This is likely due

to O. faveolata associating with the thermally tolerant symbiont

Durusdinium, which is becoming more prevalent in many

Caribbean coral species (Manzello et al., 2019; Pettay et al., 2015).

The OW treatment temperature was based on the finding that

number of days ≥31.5 °C correlated with mass bleaching events in

1997, 1998, and 2005 (Manzello, 2015). However, from the mid-1990s

to present day, the average number of days with temperatures ≥31.5°

C per year has increased by 2670% in the Florida Keys (Manzello,

2015), so future studies using Durusdinium-associated coral species

should incorporate higher temperature treatments or a gradient of

temperatures (Voolstra et al., 2020; Evensen et al., 2021), to glean

genotypic-differences in stress tolerance thresholds. Moreover, it is

imperative to continue physiological assessments of stress responses

in restoration corals after they have been outplanted to better

understand environmental and genotypic effects on tolerance,

ultimately influencing long-term restoration survival and success.
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